organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yi-Min Hu,* Feng-Hua Wu, Yuan Qu, Xia Zhang and Feng-Fa Song

College of Chemistry and Materials Science, Anhui Normal University, Anhui Key Laboratory of Functional Molecular Solids, WuHu, Anhui 241000, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.006 Å R factor = 0.073 wR factor = 0.186 Data-to-parameter ratio = 16.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-(4-Chlorophenyl)-1-(3,4-dimethyl-2,5-dihydro-1*H*-pyrrol-1-yl)prop-2-enone

The title compound, $C_{15}H_{16}CINO$, was produced by the reaction of *N*,*N*-diallylacrylamide with 1-bromo-4-chlorobenzene in the presence of palladium(II) acetate *via* an intramolecular and intermolecular C-C coupling reaction. In the crystal structure, a single weak intermolecular C-H···O interaction gives rise to extended one-dimensional chains.

Received 8 May 2006 Accepted 7 June 2006

Comment

The palladium-catalysed Heck reaction is a powerful tool for constructing nitrogen-containing heterocyclic rings (Tsuji, 1995). Pyrrole derivatives, which have physiological activity, are effective intermediates in the synthesis of many complex natural products (Poli & Giambastiani, 2002; Eriksson *et al.*, 2003). We have reported some novel palladium-catalyzed Heck intramolecular and intermolecular reactions of aryl halides with nitrogen-containing olefins (Hu, Zhou, Long *et al.*, 2003; Hu, Zhou, Lian *et al.*, 2003). The reaction of 1-bromo-4-chlorobenzene with *N*,*N*-diallylacrylamide, in the presence of palladium(II) acetate and triphenylphosphine, in DMF at 383 K for 20 h, gave the unexpected title product containing a dihydropyrrole ring.

In the title molecular structure (Fig. 1), the bond lengths and angles have normal values (Allen *et al.*, 1987). The dihedral angle between the benzene ring (C10–C15) and the dihydropyrrole ring (C3/C4/N/C5/C6) is 2.17 (4)°. In the crystal structure, a single weak intermolecular C–H···O interaction (Table 2) links molecules into one-dimensional chains, with molecules lying parallel to (101) (Fig. 2).

Experimental

An oven-dried Schlenk flask was evacuated, filled with nitrogen, and then charged with *N*,*N*-diallyl-acrylamide (1.51 g, 10 mmol), 1bromo-4-chlorobenzene (2.15 g, 11 mmol), tributylamine (3 ml), PPh₃ (52.5 mg, 0.2 mmol), Pd(OAc)₂ (24 mg, 0.1 mol) and DMF (10 ml) to give a yellow solution. The reaction mixture was heated at 383 K with stirring. The reaction mixture was cooled to room temperature after 20 h and the resulting yellow–orange mixture was diluted with Et₂O (10 ml). The mixture was washed with water

© 2006 International Union of Crystallography All rights reserved (15 ml) and the aqueous layer was extracted with Et_2O (20 ml). The combined organic layers were dried (MgSO₄), filtered and concentrated *in vacuo*. The crude material was purified by flash column chromatography on silica gel (petroleum ether/EtOAc, 10:1) and recrystallized from EtOAc (yield 0.99 g, 38%). Colorless crystals suitable for X-ray diffraction were obtained by recrystallization from a solution of the title compound from ethyl acetate over a period of one week.

Z = 4

 $D_{\rm r} = 1.284 {\rm Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 0.27 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int}=0.036$

 $\theta_{\rm max} = 26.0^\circ$

Block colorless

 $0.30 \times 0.10 \times 0.10 \ \mathrm{mm}$

3 standard reflections

every 100 reflections

intensity decay: none

 $w = 1/[\sigma^2(F_o^2) + (0.0687P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.0751P]

 $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$

2640 independent reflections

1358 reflections with $I > 2\sigma(I)$

Crystal data

 $C_{15}H_{16}CINO$ $M_r = 261.74$ Monoclinic, $P2_1/n$ a = 8.8360 (18) Å b = 15.394 (3) Å c = 9.988 (2) Å $\beta = 94.66$ (3)° V = 1354.1 (5) Å³

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\rm min} = 0.96, T_{\rm max} = 0.97$ 2812 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.073$ $wR(F^2) = 0.186$ S = 1.022640 reflections 165 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Cl-C13	1.745 (4)	N-C4	1.457 (5)
O-C7	1.229 (4)	N-C5	1.461 (5)
N-C7	1.349 (5)		
C7-N-C4	128.2 (3)	N-C4-C3	102.7 (3)
C7-N-C5	120.1 (3)	O-C7-N	121.3 (4)
C4-N-C5	111.6 (3)	O-C7-C8	122.4 (4)
C6-C3-C1	128.4 (4)	N-C7-C8	116.3 (4)
C6-C3-C4	111.6 (4)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C14-H14A\cdots O^{i}$	0.93	2.44	3.237 (5)	144
Symmetry code: (i) x -	$-\frac{1}{2}, -y + \frac{3}{2}, z - $	1/2·		

All H atoms were placed in calculated positions with C–H distances 0.93–0.97 Å and included in the refinement in riding-model approximation with $U_{\rm iso} = 1.2U_{\rm eq}(\rm C)$ or $1.5U_{\rm eq}(\rm C)$ for methyl H atoms.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms &

Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom numbering scheme.

Figure 2

View of the chain structure of the title compound, in which molecules lie parallel to (101). The broken lines show weak $C-H\cdots O$ interactions. [Symmetry codes: (i) $-\frac{1}{2} + x$, $\frac{3}{2} - y$, $-\frac{1}{2} + z$; (ii) $\frac{1}{2} + x$, $\frac{3}{2} - y$, $\frac{1}{2} + z$.] H atoms not involved in the weak interactions have been omitted.

Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 1998); software used to prepare material for publication: *SHELXL97*.

We thank the National Science Foundation of China (project 20572001), the National Science Foundation of Anhui Province (project 2004kj164zd) and the Education Department (No. 2006 K J006TD) of Anhui Province Program for financial support.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Enraf-Nonius. (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Eriksson, L., Winberg, K. J., Claro, R. T. & Sjoberg, S. (2003). J. Org. Chem. 68, 3569–3573.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Hu, Y.-M., Zhou, J., Lian, H.-Z., Zhu, C.-J. & Pan, Y. (2003). Synthesis, pp. 1177–1180.
- Hu, Y.-M., Zhou, J., Long, X.-T., Han, J.-L., Zhu, C.-J. & Pan, Y. (2003). Tetrahedron Lett. 44, 5009–5010.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Poli, G. & Giambastiani, G. (2002). J. Org. Chem. 67, 9456-9459.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Tsuji, J. (1995). Palladium Reagents and Catalysis: Innovations in Organic Synthesis, pp. 182–226. Chichester: Wiley.