Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-(4-Chlorophenyl)-1-(3,4-dimethyl-2,5-dihydro-1 H-pyrrol-1-yl)prop-2-enone

Yi-Min Hu,* Feng-Hua Wu, Yuan Qu, Xia Zhang and Feng-Fa Song

College of Chemistry and Materials Science, Anhui Normal University, Anhui Key Laboratory of Functional Molecular Solids, WuHu, Anhui 241000, People's Republic of China

Correspondence e-mail: Ilyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.073$
$w R$ factor $=0.186$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}$, was produced by the reaction of N, N-diallylacrylamide with 1-bromo-4-chlorobenzene in the presence of palladium(II) acetate via an intramolecular and intermolecular $\mathrm{C}-\mathrm{C}$ coupling reaction. In the crystal structure, a single weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction gives rise to extended one-dimensional chains.

Comment

The palladium-catalysed Heck reaction is a powerful tool for constructing nitrogen-containing heterocyclic rings (Tsuji, 1995). Pyrrole derivatives, which have physiological activity, are effective intermediates in the synthesis of many complex natural products (Poli \& Giambastiani, 2002; Eriksson et al., 2003). We have reported some novel palladium-catalyzed Heck intramolecular and intermolecular reactions of aryl halides with nitrogen-containing olefins (Hu, Zhou, Long et al., 2003; Hu, Zhou, Lian et al., 2003). The reaction of 1-bromo-4-chlorobenzene with N, N-diallylacrylamide, in the presence of palladium(II) acetate and triphenylphosphine, in DMF at 383 K for 20 h , gave the unexpected title product containing a dihydropyrrole ring.

(I)

In the title molecular structure (Fig. 1), the bond lengths and angles have normal values (Allen et al., 1987). The dihedral angle between the benzene ring ($\mathrm{C} 10-\mathrm{C} 15$) and the dihydropyrrole ring ($\mathrm{C} 3 / \mathrm{C} 4 / \mathrm{N} / \mathrm{C} 5 / \mathrm{C} 6$) is $2.17(4)^{\circ}$. In the crystal structure, a single weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction (Table 2) links molecules into one-dimensional chains, with molecules lying parallel to (101) (Fig. 2).

Experimental

An oven-dried Schlenk flask was evacuated, filled with nitrogen, and then charged with N, N-diallyl-acrylamide $(1.51 \mathrm{~g}, 10 \mathrm{mmol}), 1$ -bromo-4-chlorobenzene ($2.15 \mathrm{~g}, 11 \mathrm{mmol}$), tributylamine (3 ml), $\mathrm{PPh}_{3}(52.5 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(24 \mathrm{mg}, 0.1 \mathrm{~mol})$ and DMF $(10 \mathrm{ml})$ to give a yellow solution. The reaction mixture was heated at 383 K with stirring. The reaction mixture was cooled to room temperature after 20 h and the resulting yellow-orange mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$. The mixture was washed with water

Received 8 May 2006
Accepted 7 June 2006
$(15 \mathrm{ml})$ and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The crude material was purified by flash column chromatography on silica gel (petroleum ether/EtOAc, 10:1) and recrystallized from EtOAc (yield $0.99 \mathrm{~g}, 38 \%$). Colorless crystals suitable for X-ray diffraction were obtained by recrystallization from a solution of the title compound from ethyl acetate over a period of one week.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}$

$M_{r}=261.74$
Monoclinic, $P 2_{1} / n$
$a=8.8360(18) \AA$
$b=15.394$ (3) \AA
$c=9.988$ (2) \AA
$\beta=94.66$ (3) ${ }^{\circ}$
$V=1354.1(5) \AA^{3}$

Data collection

Enraf-Nonius CAD-4
diffractometer diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.96, T_{\text {max }}=0.97$
2812 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0687 P)^{2}\right. \\
& \quad+0.0751 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}-0.26 \mathrm{e}^{-3} .
$$

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom numbering scheme.

Figure 2
View of the chain structure of the title compound, in which molecules lie parallel to (101). The broken lines show weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. [Symmetry codes: (i) $-\frac{1}{2}+x, \frac{3}{2}-y,-\frac{1}{2}+z$; (ii) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$.] H atoms not involved in the weak interactions have been omitted.

Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXL97.

We thank the National Science Foundation of China (project 20572001), the National Science Foundation of Anhui Province (project 2004kj164zd) and the Education Department (No. 2006 K J006TD) of Anhui Province Program for financial support.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius. (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Eriksson, L., Winberg, K. J., Claro, R. T. \& Sjoberg, S. (2003). J. Org. Chem. 68, 3569-3573.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Hu, Y.-M., Zhou, J., Lian, H.-Z., Zhu, C.-J. \& Pan, Y. (2003). Synthesis, pp. 1177-1180.
Hu, Y.-M., Zhou, J., Long, X.-T., Han, J.-L., Zhu, C.-J. \& Pan, Y. (2003). Tetrahedron Lett. 44, 5009-5010.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Poli, G. \& Giambastiani, G. (2002). J. Org. Chem. 67, 9456-9459.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Tsuji, J. (1995). Palladium Reagents and Catalysis: Innovations in Organic Synthesis, pp. 182-226. Chichester: Wiley.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

